Seat No. 3203 SP-278 Total No. of Pages: 3 Shivaji University, Kolhapur Oct. Nov. 2023 Examination S.Y B.Tech, (Electronics & Computer Science) (Part-II) (Semester-III) Examination, Digital Electronics (New) Sub. Code: 91971 | Day | and | Date | : | Tuesday, | 09-01-2024 | |-----|-----|------|---|----------|------------| |-----|-----|------|---|----------|------------| Time: 10:30 am to 01:00 pm Total Marks: 70 | ¥ . | | _ |
 | _ | _ 1 | | | | | |-----|---|---|------|---|-----|---|---|---|----| | | п | S | П | П | CI | П | O | n | S: | - 1) Q.1 is compulsory - 2) Solve any 4 questions from remaining questions. - 3) Use non-programmable calculator is permissible. - 4) Figures to the right indicate full marks. - 5) Assume suitable data, if required. | a) | The binary | number of decimal num | nber 32 is | |----|---------------|-----------------------|-----------------------------| | | j) (10000 | 0)2 | ii) (101100)2 | | | iii) (11111 | 1)2 | iv) (010101)2 | | b) | 1000 | and Gates are | e universal gutes | | | i) NAND | and AND | iį) NAND and NOR | | | iii) NAND a | nd OR | iv) None of the above | | c) | 3 bits full a | dder contains | | | | i) 3 comb | oinational inputs | ii) 4 combinational inputs. | | | iii) 6 comb | inational inputs | iv) 8 combinational inputs | | | | | | | d) How much input and output need | ed for demultiplexer? | |---|--| | i) Many outputs to one input | ii) One input may outputs | | iii) One input one output | iv) None of these | | e) When does a negative level trig changes its state?i) When the clock is negative | gered flip-flop in Digital Electronics | | ii) When the clock is positive | | | iii) When the inputs are all zero | | | iv) When the inputs are all one | | | f) What is the standard form of PIPO? | | | i) Parallel In Parallel Out | ii) Parallel Out Parallel In | | iii) Positive Input Positive Out | iv) None of these | | g) Output values of Moore type FSM ar | re determined by its | | i) Input values | ii) Output values | | iii) Clock input | iv) Current state | | h) In Moore machine, output is produc | ed over the change of | | i) Transitions | ii) States | | iii) All of the mentioned | iv) None of the mentioned | | i) Which of the following is not a comm | non logic family | | i) TTL | ii) CMOS | | iii) ECL | iv) I.FD | | j) Wh | ich operator is used for concate | nation operation in Verilog? | | |-----------------|--|---------------------------------|---------------| | . i) | & | ii) 1 | | | iii) | ٨ | iv) {} | | | Q.2 a) W | hat is Octal number system? Solv | e the following | (7M) | | i) | (10101111001.0111)2 = (|) 8 | | | ii] | (105.15)10 = () 2 | | | | | i) (5C7)16 = () 10 | | | | b) E | xplain De Morgan's theorem with | ı neat gate diagram and truth t | able.
(8M) | | Q.3 a) [| Define Integrated Circuit and brie | fly explain MSI, LSI and VLSI. | (7M) | | Q.5 a) - | Explain Half adder and Full adder | with truth table and logic gate | diagram | | | 29 | | (8M) | | | What is edge triggered flip flop?
trigged D flip flop with NAND gat | | | | and the second | Explain asynchronous counter w | ith block diagram and signal d | iagram | | b) | Explain asylicinologis et a | | (8M) | | Q.5 a) | Differentiate between Mealy and | Moore machine | (7M) | | b) | Classify the logic families and cand power dissipation | letine noise margin, propaga | | | Q.6 a) | Explain how to instantiate a mod | dule with full adder example | (7M) | | b) | Explain any four verilog arithme | etic operators with example | (8M) | | | • | | | | | | | | | Seat | 0.60 | |------|------| | No. | 3203 | SP - 279 Total No. of Pages: 3 ## SHIVAJI UNIVERSITY, KOLHAPUR S.Y B. Tech. (Electronics & Computer Science) (Part-II) (Semester - III) Examination, Oct./Nov. 2023 DATA STRUCTURE & ALGORITHM (New) Sub. Code: 91972 | | | | Saturday, 06-01-2024
m. to 01.00 p.m. | di f | | Total Marks : 70 | |---------|------|-------|---|-------|-------------------------|-------------------| | Instruc | etio | ns: | | | | | | | | | pulsory.
questions from remainir | ng qu | estions. | | | | | | ogrammable calculator is | | | | | 4) Figu | res | to th | ne right indicate full marl | ζS. | | | | 5) Assu | | | table data, if required. |) | | | | Q.1 So | lve | e M | CQ's | | | (1 marks each) | | i. | | • | perform level-order trave
structure will be required | | on a binary tree, which | of the following | | | | a) | Hash table | b) | Queue | | | | | c) | Binary search tree | d,) | Stack | - | | ii. | | | ch of the following data | | • | onvert arithmetic | | | | a) | Queue | b) | Linked list | | | | | c) | Binary search tree | d) | None of above | | | iii. | | The | time complexity of quic | ksor | t is | | | | | a) | O(n) | b) | O(logn) | | | | | c) | O(n2) | ġ) | O (n logn) | | | | | | | | | | | ١٧. | ••••• | sorm of access is | s use | d to add and remove nodes from a quot | |-------|--------|---------------------------|--------|---| | | a) | LIFO, Last in First Ou | it b) | FIFO, First in First Out | | | c) | Both a and b | d) | •None of these | | V. | Wh | ich data structure is the | best f | or implementing a priority queue? | | | a) | Heap | b) | Агтау | | (| c) | Linked list | d) | Stack | | vi. | Wh | ich of following is conta | ined | by the header of the linked list? | | | a) | The address of the firs | | | | | b) | The address of the last | nod | e · | | | c) | Pointer to the last reco | rd of | the actual data | | | d) | Middle record of the ac | | | | vii. | Wh | ich of the following data | struc | ctures is indexed structure? | | | a) | Агтау | b) | Structure | | | c) | Stack | d) | Queue | | viii. | The | data structure required | for B | readth First Traversal on graph is | | | a) | queue | b) | stack | | | c) | tree | d) | array | | ix. | An of: | adjacency matrix represe | ntati | on of a graph cannot contain information | | | a) | Nodes | b) | Edges | | | c) | Direction of edges | d) | Parallel edges | | X. | Whi | | | ne application of the Queue data structure? | | | a) | Resource shared betwe | en va | rious systems | | | b) | Data is transferred asyn | chror | nously | | | c) (| Load balancing | | | | | d) | Balancing of symbols | | | | | | | | | | Q.2 a) | What is data structure? Explain types of data structure with example | [7 | |--|---|-----| | ; b) | Define Stack? With help of suitable example, explain working of PUS | SH | | | and POP operation of stack. | [8 | | Q.3 a) | Define Linked List? How to represent Linked List. Compare Linked | | | | List V/S Arrays. | [7 | | b) | Construct algorithm for following operations on a Singly Linked List. | [8] | | A. A. | 1. Create | | | The state of s | II. Deleting at End | | | | III. Counting | | | | IV. Inserting at start | | | Q.4 a) | Define tree, explain basic tree terminologies. | [7] | | b) | Write C program or Pseudo code for following operations on a | | | | binary tree: | [8] | | | i) insert a new node to the tree | | | | ii) Pre order traversal | | | | iii) Post order traversal | | | Q.5, a) | Write in detail of algorithm. Write an algorithm to factorial of | | | | a number. | [7] | | <u>þ)</u> | Explain following graph Representation: | [8] | | | i) Adjacency Matrix | | | | ii) Adjacency Lists | | | Q.6(a) | Explain Linear Search algorithm with algorithm. | [7] | | 5) | Write C Program to implement Insertion Sort & Bubble Sort. | [8] | | | | () | Total No. of Pages: 3 ## SHIVAJI UNIVERSITY, KOLHAPUR S.Y B. Tech. (Electronics & Computer Science) (Part-II) (Semester - III) Oct. / Nov. 2023 Examination, ENGINEERING MATHEMATICS -III Sub. Code: 91969 Day and Date: Tuesday, 02-01-2024 Total Marks: 70 Time: 10.30 a.m. to 01.00 p.m. #### Instructions: - 1) Q.1 is compulsory. - 2) Solve any 4 questions from remaining questions. - 3) Use non-programmable calculator is permissible. - 4) Figures to the right indicate full marks, - 5) Assume suitable data, if required #### Q1 Solve MCQ's (2 marks each) i. The complete solution of $(D^3 - 3D^2 + 3D - 1)y = 0$ A) $$y = (C_1 + C_2 x + C_3 x^2)e^x$$ B) $$y = C_1 + (C_2 + C_3 x)e^{-x}$$ C) $$y = C_1 e^{-x} + (C_2 + C_3 x) e^x$$ D) $$y = (C_1 + C_2 x)e^x + C_3 e^{-2x}$$ - ii.. The curl of vector field $f(x, y, z) = x^2 i + 2zj yk$ is - A) -3j B) -3k C) -3i D) 0 iii If $$A(x) = \frac{1}{x+2}$$, where $x = \{61,2,3,4\}$ then scalar cardinality of A..... A) 2.2818 B) 1.4689 C) 1.2833 D) 2.1896 .1 - - iv. In Fourier expansion of $f(x) = 2 \frac{x^2}{2}$; $0 \le x \le 2$ the value of constant- - D) $\frac{-4}{3}$ - 10% of the tools produced in a certain manufacturing process turned out to be defective. Find the probabilities that out of 20 selected at random there are exactly 2 are defective. - A) 0.2345 B) 0.2020 C) 0.2852 D) 0.1923 Q.2 a) Solve $$(D^2 + D + 2)y = 1+x$$ b) Solve, $$(D^2 - 3D + 2)y = x^2 e^{2x}$$ b) Solve, $(D^2 - 3D + 2)y = x^2 e^{2x}$ Q.3 a) If \overline{a} , \overline{b} are constants and $\overline{r} = \overline{a} cosnt + \overline{b} sin nt$, P.T. i) $$\bar{r} X \frac{d\bar{r}}{dt} = n(\bar{a}X\bar{b})$$, ii) $\frac{d^2\bar{r}}{dt^2} + n^2\bar{r} = 0$ [7] b) Prove that $$\nabla \left(\frac{\vec{r}}{r^3}\right) = 0$$ [8] - Find Laplace Transform of \vec{i}) $t^2 \sin at$, ii) Find L⁻¹ $\left[\frac{1}{s^2(s+1)}\right]$ Q.4 a) [7] - Obtain half range Fourier cosine and sign series for $f(x) = e^{-x} in(0, \pi)$. [8] - Q.5 a) α -cut and strong α -cut. Find α -cut and strong α -cut for α = 0.2, 0.3, 0.4 for the Fuzzy set defined by $$C(x) = \frac{x}{x+1}, x \in \{1,2,3,4,5\}.$$ [7] b) Define Fuzzy cardinality. Find the fuzzy cardinality of $$A(x) = \frac{35-x}{15} \text{ on } X = \{20,22,24,26,28,30,32,34\}$$ [8] Q.6 a) Fit a Poisson's distribution to the following data [7] | V | 0 | | | 5 | | | |---|-----|-----|----|---|---|-------| | A | 0 | 1 | 2 | 3 | 4 | Total | | f | 192 | 100 | 24 | 3 | 1 | 320 | b) Customer accounts of a certain departmental store have an average balance Rs. 120 and a standard deviation Rs. 40, assuming that the distribution of account balance is normal. Find the proportion of account i) over Rs. 150 ii) between Rs. 100 & Rs. 150 iii) between Rs. 60 & Rs. 90 (Given area from z = 0 to z = 0.5 is 0.1915, from z = 0 to z = 0.75 is 0.2734 and from z=0 to z = 1.5 is 0.4332) 108/20 108N2 Total No. of Pages: 3 ## SHIVAJI UNIVERSITY, KOLHAPUR S.Y B. Tech. (Electronics & Computer Science) (Part-II) (Semester - III) Examination, Oct./Nov.-2023 Subject Name: Electronics Device (New) Subject Code: 91970 | 100 | | Гhursday, 04-01-
n. to 01.00 p.m. | 2024 | Total Marks : 70 | |------------|---------|--|----------------|--------------------------------------| | Instructi | ons: | | | | | 1) Q.1 is | comp | oulsory. | | | | 2) Solve a | any 4 | questions from re | emaining qu | estions. | | 3) Use no | n-pro | grammable calcu | lator is perm | nissible. | | | | e right indicate fo | 6 | | | 5) Assum | ie suit | able data, if requ | irea. |) | | Q.1 Solv | | and the same of th | 00 | (1 marks each) | | i) | The | battery connecti | ions require | to forward bias a P-N junction diode | | | is | | | | | | A.) | +ve terminal to | P and -ve ter | minal to N | | | B) | -ve terminal to N | I and +ve ter | rminal to N | | | C) | -ve terminal to I | and +ve ter | minal to N | | e.dl | D) | None of these | | 06/ | | ii) | The | impu | rity is called | as an accepter impurity | | | A) | Trivalent | B) | Tetravalent | | | C) | Pentavalent | D) | None of these | | iii) | | are minor | rity carrier i | n N-type semiconductor. | | | A) | Electrons | B) | Holes | | | C) | lons | D) | both a and b | | | C (C) (C) | | |-------------|-----------|---| | Seat
No. | 320 | 3 | SP - 277 Total No. of Pages: 3 ## SHIVAJI UNIVERSITY, KOLHAPUR S.Y B. Tech. (Electronics & Computer Science) (Part-II) (Semester - III) Examination, Oct./Nov.-2023 Subject Name: Electronics Device (New) Subject Code: 91970 | | | Subj | | a the condition per and a digital | • | |-------------------|---------|--|---------------|-----------------------------------|---| | | | Thursday, 04-01-20
n. to 01.00 p.m. |)24 | Total M | arks : 70 | | Instruction | ons: |)
) | ξη. | | | | 1) Q.1 is | comp | oulsory. | | | | | 2) Solve a | any 4 | questions from ren | naining que | stions. | | | 3) Use no | n-pro | grammable calcula | ator is perm | ssible. | | | 4) Figure | s to th | e right indicate ful | l marks. | | | | 5) Assum | e suit | able data, if require | ed. | | | | | - 44- | | 0 | | | | Q.1 Solv | e MO | CQ's | | (1 ma) | rks each) | | i) | The | battery connectio | ns require | to forward bias a P-N junct | ion diode | | | is | | | | | | | A) | +ve terminal to P | and -ve tern | ninal to N | | | | B) | -ve terminal to N | and +ve terr | ninal to N | | | | C) | -ve terminal to P | and +ve terr | ninal to N | | | 74 | D) | None of these | | 00' | | | ii) | The | impurit | y is called | as an accepter impurity | | | | A) | Trivalent | B) | Tetravalent | | | | C) | Pentavalent | D) | None of these | | | iii) | | are minori | ty carrier in | N-type semiconductor. | | | | A) | Electrons | B) | Holes | | | The second second | C) | lons | D) | both a and b | | | (V) The ripple factor of a full | wave rectifier is | |-----------------------------------|---| | A) 1.21 | B) 0.48 | | C) 0.24 | D) 0.61 | | v) The filter capacitor is plac | ed in | | A) Series with load | B) parallel with load | | C) Vicinity with load | D) None of these | | vi) The layer has l | nighest doping concentration in BJT | | A) Base | B) Emitter | | C) Collector | D) both a and b | | vii) The common Emitter (CE) | forward amplification factor | | β _{dc} is given by | a uniprinteation factor | | A) $I_{\rm C}/I_{\rm E}$ | B) I ₁ /I _n | | C) $I_{\rm E}/I_{\rm B}$ | D) $I_{\rm B}/I_{\rm E}$ | | viii) α of transistor is 0.9, cal | Tilato B | | A) 0.9 | | | C) 9 | B) 90
D) 0.09 | | ix) MOSEFT is a | , | | A) Current | | | C) Field | B) Voltage | | 49 | D) both a and b | | indicate it is a current f | lows due to the | | A) Holes | B) Electrons | | C) lons | D) both a and c | | a) What is diode? Explain zero, | forward, reverse biasing of diode with neat | | SACTOR. | 171 | | b) Explain V-I characteristics of | diode and write its applications. [8] | Q.2 | b) What is clipper and clamper circuited? Explain the series negative clippe with relevant diagram. Q.4 a) Explain common emitter (CE) configuration of BJT. b) Campare P-N junction diode and Zener diode and write applications of Zener diode. Q.5 a) What is filter? and what are types of filter circuit, explain anyone. b) What is rectifier? Explain half wave rectifier with center tapped transformer. Q.6 a) Calculate the emitter current le for a transistor connected in Common emitter (CE) configuration, given β=45 and I_B=15μA. b) Explain construction, symbol, working principle and V-I characteristic contents. | Q.3 | a) | What are the types of breakdowns in diodes? | | |--|-----|------|--|--------| | with relevant diagram. Q.4 a) Explain common emitter (CE) configuration of BJT. b) Campare P-N junction diode and Zener diode and write applications of Zener diode. [8] Q.5 a) What is filter? and what are types of filter circuit, explain anyone. b) What is rectifier? Explain half wave rectifier with center tapped transformer. [8] Q.6 a) Calculate the emitter current le for a transistor connected in Common emitter (CE) configuration, given β=45 and I _B =15μA. [7] b) Explain construction, symbol, working principle and V-I characteristic connected in Common emitter (CE) configuration, given β=45 and I _B =15μA. | | • | Explain Avalanche effect. | [7] | | with relevant diagram. Q.4 a) Explain common emitter (CE) configuration of BJT. b) Campare P-N junction diode and Zener diode and write applications of Zener diode. [8] Q.5 a) What is filter? and what are types of filter circuit, explain anyone. b) What is rectifier? Explain half wave rectifier with center tapped transformer. [8] Q.6 a) Calculate the emitter current le for a transistor connected in Common emitter (CE) configuration, given β=45 and I _B =15μA. [7] b) Explain construction, symbol, working principle and V-I characteristic connected in Common emitter (CE) configuration, given β=45 and I _B =15μA. | | b) | What is clipper and clamper circuited? Explain the series negative cl | ipper | | b) Campare P-N junction diode and Zener diode and write applications of Zener diode. Q.5 a) What is filter? and what are types of filter circuit, explain anyone. b) What is rectifier? Explain half wave rectifier with center tapped transformer. Q.6 a) Calculate the emitter current le for a transistor connected in Common emitter (CE) configuration, given β=45 and I_B=15μA. b) Explain construction, symbol, working principle and V-I characteristic of the content the | | | | [8] | | of Zener diode. Q.5 a) What is filter? and what are types of filter circuit, explain anyone. b) What is rectifier? Explain half wave rectifier with center tapped transformer. [8 Q.6 a) Calculate the emitter current le for a transistor connected in Common emitter (CE) configuration, given β=45 and I _B =15μA. [7 b) Explain construction, symbol, working principle and V-I characteristic of the content | Q.4 | l a) | Explain common emitter (CE) configuration of BJT. | [7] | | Q.5 a) What is filter? and what are types of filter circuit, explain anyone. [7] b) What is rectifier? Explain half wave rectifier with center tapped transformer. [8] Q.6 a) Calculate the emitter current le for a transistor connected in Common emitter (CE) configuration, given β=45 and I_B=15μA. [7] b) Explain construction, symbol, working principle and V-I characteristic of the construction constr | | b) | Campare P-N junction diode and Zener diode and write applications | | | b) What is rectifier? Explain half wave rectifier with center tapped transformer. Q.6 a) Calculate the emitter current le for a transistor connected in Common emitter (CE) configuration, given β=45 and I_B=15μA. b) Explain construction, symbol, working principle and V-I characteristic of the construction cons | | | of Zener diode. | [8] | | transformer. Q.6 a) Calculate the emitter current le for a transistor connected in Common emitter (CE) configuration, given β=45 and I _B =15μA. [7] Explain construction, symbol, working principle and V-I characteristic of the construction t | Q.5 | 5 a) | What is filter? and what are types of filter circuit, explain anyone. | [7] | | Q.6 a) Calculate the emitter current le for a transistor connected in Common emitter (CE) configuration, given β=45 and I_B=15μA. b) Explain construction, symbol, working principle and V-I characteristic of the construction. | | b) | What is rectifier? Explain half wave rectifier with center tapped | | | (CE) configuration, given β=45 and I_B=15μA. [7 b) Explain construction, symbol, working principle and V-I characteristic of the construction. | | | transformer. | [8] | | b) Explain construction, symbol, working principle and V-I characteristic of | Q. | 6 a) | Calculate the emitter current le for a transistor connected in Common er | nitter | | | | ÷ | (CE) configuration, given β =45 and I_B =15 μ A. | [7] | | LED. [8 | | b) | Explain construction, symbol, working principle and V-I characteris | tic of | | | | | | [8] | Seat 3203 SP-280 Total No. of Pages: 3 # Shivaji University, Kolhapur Oct. Nov. 2023 Examination S.Y B. Tech. (Electronics & Computer Science) (Part-II) (Semester - III) **Database Management System** Sub. Code: 91973 Day and Date: Thursday, 11-01-2024 Total Marks: 70 Time: 10:30 am to 01:30 pm #### **Instructions:** - 1) Q.1 is compulsory. - 2) Solve any 4 questions from remaining questions. - 3) Use non-programmable calculator is permissible. - 4) Figures to the right indicate full marks. - 5) Assume suitable data, if required. ### Q.1 Solve MCQ's (1 marks each) - i. Which of the following refers to the number of attributes in a relation? - A) Degree B) Row C) Column - D) All the above - ii. Which of the following makes the transaction permanent in the database? - A) View B) Rollback C) Commit - D) Flashback - iii. By normalizing relations or sets of relations, one minimizes - A) Data B) Field C) Database D) Redundancy --- 1 --- [P.T.O.] | | iv. | which of the following command is a type of Data Definition language command? | | | | | |----|-------------|---|---|--|--|--| | | | M) Create | B) Update | | | | | | | C) Merge | D) Delete | | | | | | v. | In E-R Diagram multivalued attribut | es are represented by | | | | | | N | A) Rectangle | B) Ellipse | | | | | | 4 4 | C) Double Ellipse | D) Diamond | | | | | | vi. | The result of the UNION operation be includes | petween R1 and R2 is a relation that | | | | | | | A) all the tuples of R1 | | | | | | | | B) all the tuples of R2 | | | | | | | | C) all the tuples of R1 and R2 | | | | | | | | D) all the tuples of R1 and R2 which | have common columns | | | | | | vii. | rii. In case of entity integrity, the primary key may be | | | | | | | | A) Not Null | B) Null | | | | | | | C) Both Null and not Null | D) Any Value | | | | | | viii. | The language which has recently interfacing application programs wi | become the defacto standard for the relational database system is | | | | | | | A) Oracle | B) SQL | | | | | | 1 | C) DBase | D) 4GL | | | | | iz | c. 7 | The statement in SQL, which the allo | ow to change definition of table is | | | | | | | A) Alter | B) Update | | | | | | C | C) Create | D) Select | | | | | | | | | | | | | | X. | The operator is used to compare a value to a list of literals values have been specified | that | |-----|------------|---|--------------| | | | A) Any B) In | | | | | C) All D) Between | | | Q.2 | - | Explain Set operation in SQI. with example of each. | [7] | | | þ) | Explain the following terms | [8] | | | 1 | i. Entity and its types. | | | | | ii. Attribute its types. | | | Q.3 | <u>a</u>) | Explain the different datatypes used in SQL | [7] | | | þ) | Define Data Independence? Explain the types of Data Independence | .[8] | | Q.4 | a) | Explain ACID Transaction properties with example. | [7] | | | b) | Explain Aggregate function with sytax and example. | [8] | | Q.5 | a) | Draw ER diagram for library management system considering issuereturn, fine collection facility. Consider appropriate entities. | e and
[7] | | | b) | With reference to relational database, explain the following terms | [8] | | | | i. Table | | | | | ii. Tuple | | | | | iii Domain | | | | | iv. Attribute domain | | | | | v. Data types. | | | | | vi. Fields | | | Q.6 | a) | Explain Conflict Serializability and view Serializability. | [7] | | | b) | Explain log-based recovery mechanism. | [8] | | | | | |